Robust Sensor for In-Flight Flow Characterization, Phase I

Completed Technology Project (2015 - 2015)

Project Introduction

Tao Systems proposes to develop a sensor system providing quantitative inflight boundary layer flow characterization with fast response, low volume, minimal intrusion, high accuracy and robustness to weather conditions. Aviation loss of control (LOC) accidents often results from stalls and uncertain weather/flow conditions, often at low altitudes e.g., take-off/landing. We propose to develop a robust sensor system to assess stall conditions and surface boundary layer phenomena through the use of a low-weight system consisting of surface flow sensors that: (1) use a robust transduction mechanism, (2) is operable under adverse weather conditions, e.g., rain, (3) has a one-time lifetime calibration with a minimal maintenance schedule, (4) provides monotonic output with speed and flow angle, and (5) relatively insensitive to environmental parameters such as flight altitude, pressure, temperature, and density. This technology increases sensor robustness as output for control feedback for a wide range of flight regimes and flow conditions.

Primary U.S. Work Locations and Key Partners

Robust Sensor for In-Flight Flow Characterization, Phase I

Table of Contents

Project Introduction	1	
Primary U.S. Work Locations		
and Key Partners	1	
Project Transitions	2	
Images	2	
Organizational Responsibility		
Project Management	2	
Technology Maturity (TRL)	2	
Technology Areas	3	
Target Destinations	3	

Small Business Innovation Research/Small Business Tech Transfer

Robust Sensor for In-Flight Flow Characterization, Phase I

Completed Technology Project (2015 - 2015)

Organizations Performing Work	Role	Туре	Location
Tao of Systems Integration, Inc.	Lead Organization	Industry Minority-Owned Business, Small Disadvantaged Business (SDB)	Hampton, Virginia
ArmstrongFlight ResearchCenter(AFRC)	Supporting Organization	NASA Center	Edwards, California

Primary U.S. Work Locations	
California	Virginia

Project Transitions

June 2015: Project Start

December 2015: Closed out

Closeout Summary: Robust Sensor for In-Flight Flow Characterization, Phase I Project Image

Closeout Documentation:

• Final Summary Chart Image(https://techport.nasa.gov/file/139417)

Images

Briefing Chart Image Robust Sensor for In-Flight Flow Characterization, Phase I (https://techport.nasa.gov/imag e/128233)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Tao of Systems Integration, Inc.

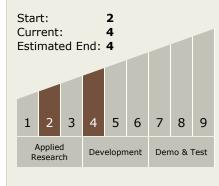
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Arun Mangalam

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Robust Sensor for In-Flight Flow Characterization, Phase I

Completed Technology Project (2015 - 2015)

Technology Areas

Primary:

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

